

Understanding Human Judgment in Table Unionability

NEDB Day 2026 • Boston • January 16, 2026

Sreeram Marimuthu, Nina Klimenkova, Roee Shraga

Background

Table Unionability: a fundamental challenge in data discovery - identifying tables that can be meaningfully combined (unioned)

Table A		
Continent	Country Name	Official Language(s)
Asia	Afghanistan	Pashto, Uzbek, Turkmen
South America	Brazil	Portuguese
North America	Canada	English, French
Asia	China	Chinese
Africa	Egypt	Arabic

Query table

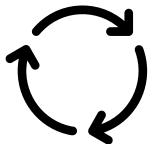
Table B		
City Names	Official Language(s) in City	Continent in City
Rio de Janeiro	Portuguese	South America
Mumbai	English, Hindi	Asia
Cairo	Arabic	Africa
Lagos	English	Africa
Tokyo	Japanese	Asia

Datalake table

*In this work, we focus on **judging unionability** rather than the search itself*

Background

Table Unionability: a fundamental challenge in data discovery - identifying tables that can be meaningfully combined



Evolving Definitions

- Traditional: **All** columns should be unionable
- Relaxed [1]: **Some** columns should be unionable
- Relationship-based [2]: **Some (meaningful)** columns should be unionable
- Context-aware [3]: **Some (context-consistent)** columns should be unionable

[1] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. Table union search on open data. VLDB 2018

[2] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatterbauer, Renée J. Miller, and Mirek Riedewald. Santos: Relationship-based semantic table union search. SIGMOD 2023

[3] Fan, Grace, Jin Wang, Yuliang Li, Dan Zhang, and Renée J. Miller. "Semantics-Aware Dataset Discovery from Data Lakes with Contextualized Column-Based Representation Learning." VLDB 2023

Motivation

Evolving Definitions

- Traditional
- Relaxed [1]
- Relationship-based [2]

Can we use human input
patterns to improve the quality of
table unionability judgments?

Cognitive Challenge

- Semantic interpretation
- Context understanding
- Domain knowledge
- Judgment under ambiguity

Table A		
Continent	Country Name	Official Language(s)
Asia	Afghanistan	Pashto, Uzbek, Turkmen
South America	Brazil	Portuguese
North America	Canada	English, French
Asia	China	Chinese
Africa	Egypt	Arabic

Table B		
City Names	Official Language(s) in City	Continent in City
Rio de Janeiro	Portuguese	South America
Mumbai	English, Hindi	Asia
Cairo	Arabic	Africa
Lagos	English	Africa
Tokyo	Japanese	Asia

[1] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. Table union search on open data. *Proceedings of the VLDB Endowment (PVLDB)*, 11(7):813–825, 2018

[2] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatterbauer, Renée J. Miller, and Mirek Riedewald. Santos: Relationship-based semantic table union search. *Proceedings of the ACM on Management of Data*, 1(1):1–25, 2023

Survey Design

Do you think Table A and Table B are union-able?

✓ 4 survey versions for balanced design

Table A		
Continent	Country Name	Official Language(s)
Asia	Afghanistan	Pashto, Uzbek, Turkmen
South America	Brazil	Portuguese
North America	Canada	English, French
Asia	China	Chinese
Africa	Egypt	Arabic

Table B		
City Names	Official Language(s) in City	Continent in City
Rio de Janeiro	Portuguese	South America
Mumbai	English, Hindi	Asia
Cairo	Arabic	Africa
Lagos	English	Africa
Tokyo	Japanese	Asia

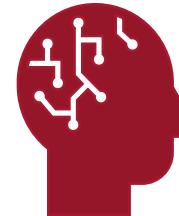
Yes

No

On a scale from 0 to 100, how confident are you in your answer to the previous question?

0 10 20 30 40 50 60 70 80 90 100

Confidence Level



✓ Behavioral tracking: clicks, decision time, interaction patterns

✓ Tables from UGEN
benchmark dataset [4]

Please provide a brief explanation to support your answer.

2

[4] Koyena Pal, Aamod Khatriwada, Roee Shraga, and Renée J. Miller. Alt-gen: Benchmarking table union search using large language models. In Proceedings of the VLDB 2024 Workshop: Tabular Data Analysis Workshop (TaDA), 2024. Available at: <https://github.com/northeastern-datalab/gen>.

Experimental Design and Dataset

Participant Demographics

58

Participants

8

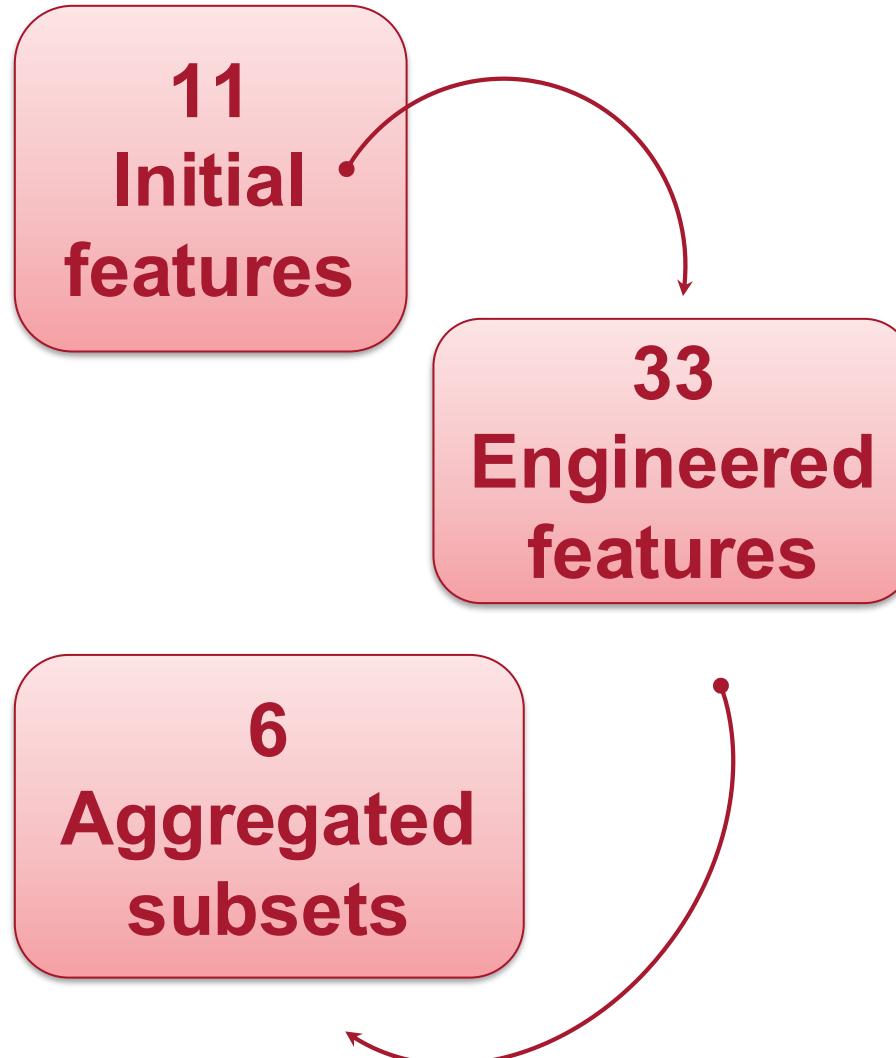
Questions

464

Total Responses

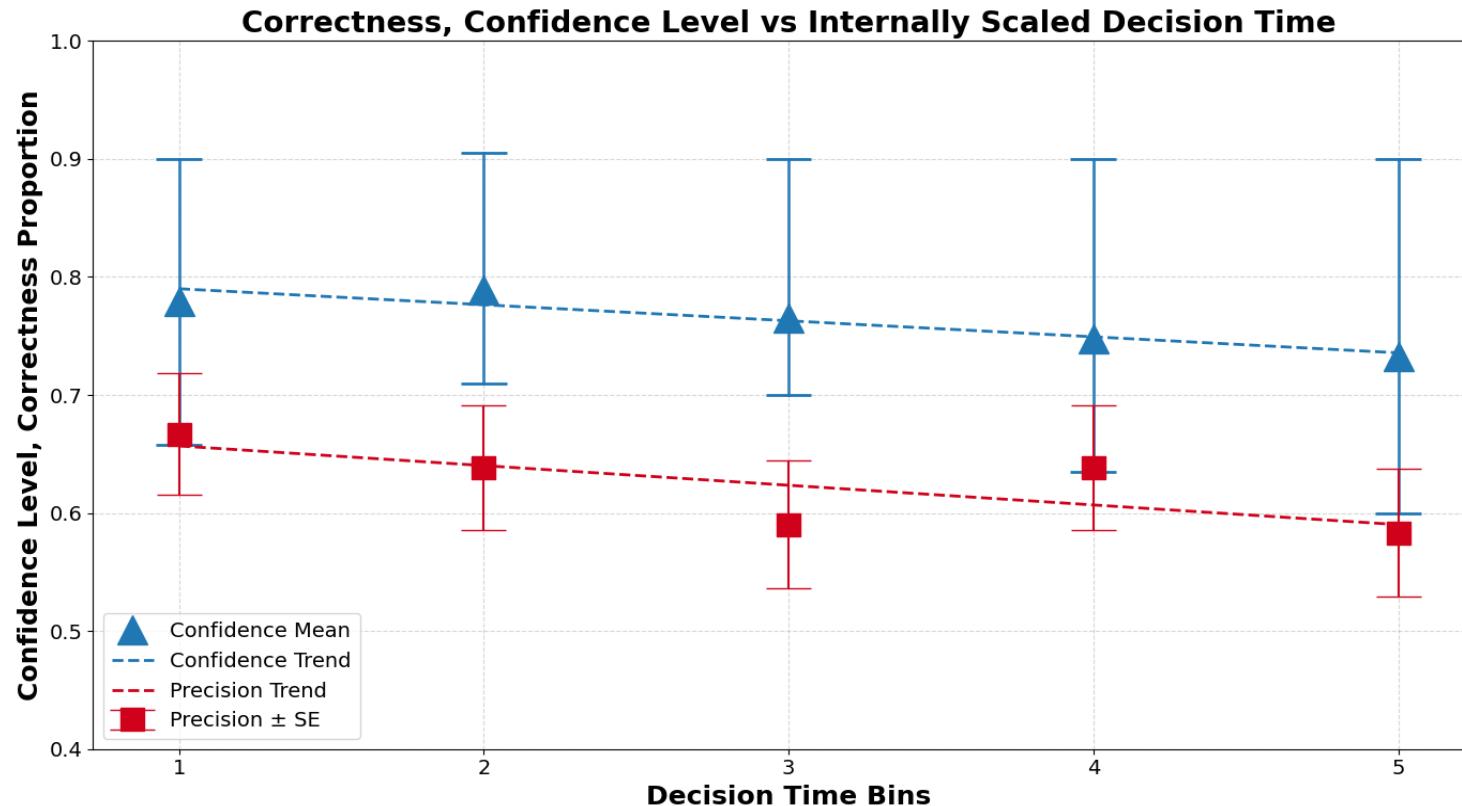
- Students in CS, Data Science, AI
- Undergraduate, Masters, PhD levels
- 81% majoring in data/computing fields
- 70%+ fluent/native English speakers

Dataset



6 Aggregated subsets	
Feature Group	Description
Click	Click behavior metrics
User	Demographics & metadata
Human-Labels	Participant response items
Quantified-Human-Labels	Group-level correctness
Decision-Time	Temporal decision measures
Confidence Level	Self-reported confidence

Human Behavior Analysis



- Confidence decreases with decision time ($0.79 \rightarrow 0.74$)
- Accuracy drops with longer decisions ($0.66 \rightarrow 0.59$)
 - Suggests **overthinking** may hurt performance
 - Longer deliberation = harder cases

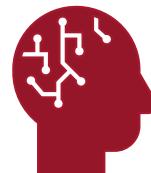
Calibrating Human Table Unionability Labels

Approach

- Train 4 classifiers: LR, KNN, RF, XGB
- 33 features (3 versions) → test on held-out version
- **Goal: predict whether a human answer is correct**

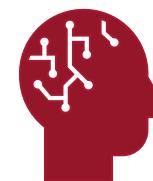
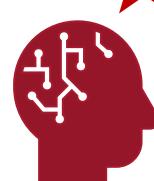
→ cleaner labels

- Metric: accuracy (Yes=1, No=0)



Calibrating Human Table Unionability Labels

Version	Human Baseline	ML Enhanced	Improvement	Best Model
V1	0.70	0.83	+17.8%	Logistic Regression
V2	0.58	0.64	+10.1%	K-Nearest Neighbors
V3	0.58	0.88	+52.2%	Random Forest
V4	0.59	0.73	+24.2%	XGBoost
Average	0.61	0.77	+25.5%	-



Feature Group Performance

Average Improvement over Human Baseline:

Feature Group	Description
Click	Click behavior metrics
User	Demographics & metadata
Human-Labels	Participant response items
Quantified-Human-Labels	Group-level correctness
Decision-Time	Temporal decision measures
Confidence Level	Self-reported confidence

+32.3%
Decision
Time
Features

+11.6%
Confidence
Level

+20.1%
Quantified
Labels

-18.1% User
Demographics
only

Human-AI Collaboration

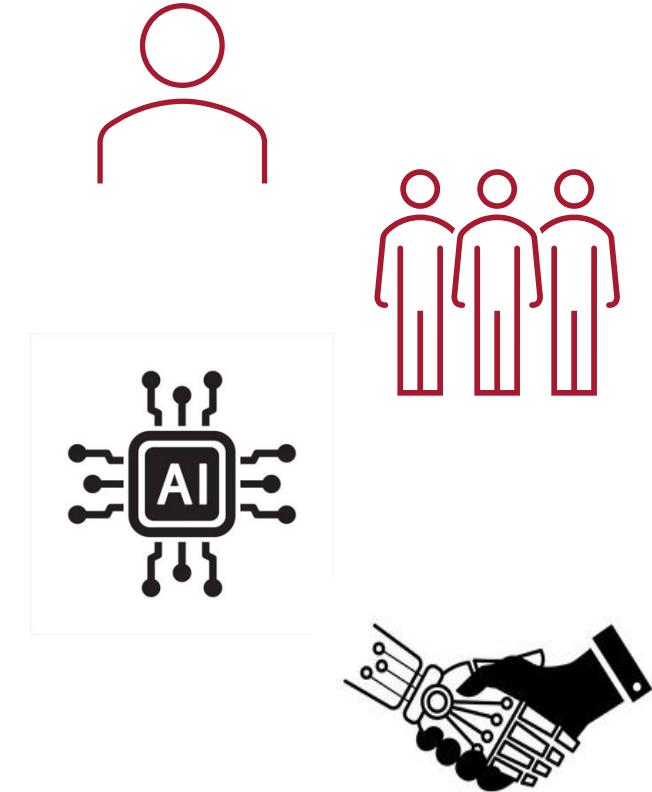
Tested Llama-3.3 70B with varying levels of human context

Scenario 1. Human (Actual): raw human responses

Scenario 2. Human (Majority): majority vote

Scenario 3. LLM Only: just table description

Scenario 4. LLM + Human Context: added metacognitive data

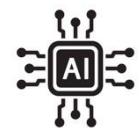


Human-AI Collaboration

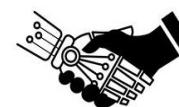
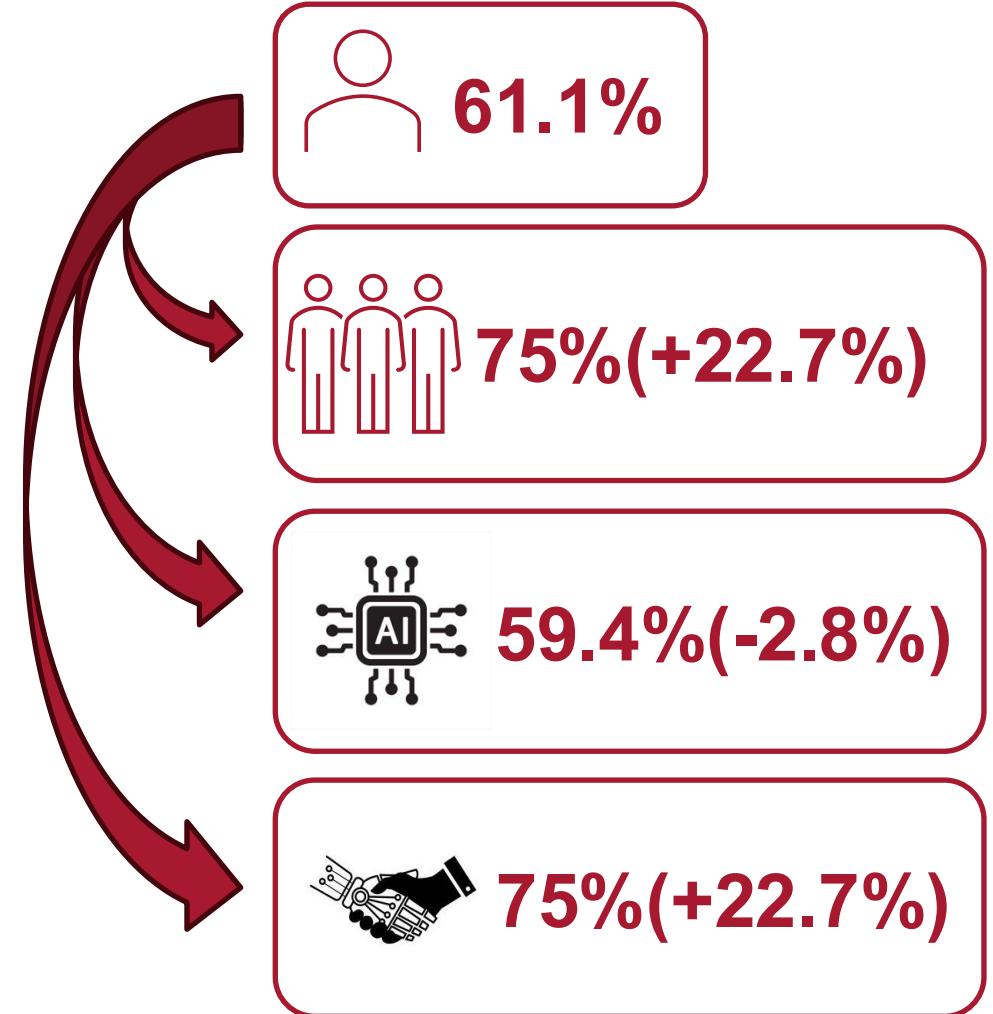
1. Human (Actual)

2. Human (Majority)

3. LLM Only



4. LLM + Human Context



Key Takeaways

- ✓ Humans show systematic patterns in unionability decisions
- ✓ Behavioral features can improve label quality by 25%+
- ✓ LLMs benefit significantly from human context, but did not consistently improve through the addition of meta-cognitive factors
- ✓ Collective intelligence outperforms individual judgments

Thank you for listening!

Based on: Nina Klimenkova, Sreeram Marimuthu, Roee Shraga. *“Humans, Machine Learning, and Language Models in Union: A Cognitive Study on Table Unionability”*. HILDA at SIGMOD 2025

rshraga@wpi.edu

nklimenkova@wpi.edu

YOSSI Lab

