
● Multiple model choices, accuracy vs cost
● Input processing deadline
● Streaming throughput requirement
● Fallback strategy reduces accuracy
● Model accuracy is not uniform over distribution

Accurate ML Processing under Real-Time Constraints
Phillip Hilliard, Zack Ives, Rajeev Alur, University of Pennsylvania

Streaming Queries with ML

Pre-classifier

Choice

Model 1

Model 2

Blur

Costpre-model+ Costmodel choice+ Costpost-model < Deadline 

fallback

Modern applications use ML models to 
process data as part of a larger query.
Tasks have multiple available models 
that trade accuracy for runtime cost. 
No single model can provide the best 
accuracy over varied data and at 
various throughput requirements.

Simple & fast factors can still yield optimization opportunities!
● Simple metrics + logistic regression offline
● Performance buckets with meaningful differences

○ expected reward and cost if a model runs processes an input
○ information for scheduling adaptive decisions

● Forecasting a future window using past buckets + rates
● Greedy algorithm assigns model routes for inputs by bucket

height

width
sub-
IMG

logistic
regression

Bucket 1

Bucket 2

Adaptive Query Processing
Scenario: An image stream splits into cropped 
faces. Faces are embedded and joined against an 
index. Matches are blurred afterwards.
Adaptive Query Processing can help pick the 
best model in the ML operations, but the 
operator will be on the critical path.
Goal: Improve accuracy without exceeding 
deadlines and falling behind.

Successful Adaptivity

Results and Takeaways
● Our approach (green) matches the optimal 

strategy across a variety of scenarios
● Forecasting+scheduling almost always provides 

more benefit than overhead
● Reduces “fallback” (0% acc.) cases while 

allowing calls to Model 2

More domains. We have results for at least two other modalities: time-series health data 
and text-based question-answering. We also intend to expand this to more queries.

QR
Code

QR
Code

Quantifying uncertainty. Learned methods can offer measures of confidence, 
from distance thresholds to bucketing logits. Can queries make greater use of 
those probabilities, using lessons learned here in streaming and from elsewhere in 
probabilistic databases? Can we provide bounds based on what information has 
gone through the system so far? Can bounds be used as constraints in 
optimization problems like this one, and for optimizing other query processing 
problems like approximate query processing?

Scheduling implementation. Bucket-based scheduling leaves opportunities to change 
the parameters. We currently make a new forecast and compute a new schedule for every 
input. What if we chose a different window size? What if we schedule multiple current 
inputs together? What if we reuse a schedule for subsequent inputs?

Split
IMG Bucket 1

Model Reward Cost

Model 1 0.917 2.17 ms

Model 2 0.942 9.5 ms

Bucket 2
Model Reward Cost

Model 1 0.928 2.17 ms

Model 2 0.975 9.5 ms

Vector
Join

Solution Insights

Categorize inputs for improved scheduling info

Problem Concerns

Vector
Join

What’s next?

Distance 
threshold

Distance 
threshold

Forecasts of future inputs reveal 
short-term vs long-term opportunities.
An ultra-lightweight pre-classifier gives 
very fast info and lets us meet deadlines!
We adapt to remain competitive with the 
best model choice under varied input 
distributions, volumes, and velocities.


