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Streaming Queries with ML Adaptive Query Processing Successful Adaptivity

Modern applications use ML models to Scenario: An image stream splits into cropped Forecasts of future inputs reveal

process data as part of a larger query:.
Tasks have multiple available models
that trade accuracy tor runtime cost.
No single model can provide the best
accuracy over varied data and at
various throughput requirements.

faces. Faces are embedded and joined against an short-term vs long-term opportunities.

index. Matches are blurred afterwards.
Adaptive Query Processing can help pick the
best model in the ML operations, but the
operator will be on the critical path.

Goal: Improve accuracy without exceeding

deadlines and falling behind.

Pre-classifier

Categorize inputs for improved scheduling info

2.17 ms

9.5 ms

An ultra-lightweight pre-classifier gives
very fast info and lets us meet deadlines!
We adapt to remain competitive with the
best model choice under varied input
distributions, volumes, and velocities.
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IMG Bucket 1 Bucket 2
Model | Reward | Cost Model | Reward| Cost
Model 1| 0.917 | 2.17 ms Model 1| 0.928
Model 2| 0.942 | 9.5 ms Model 2| 0.975
Problem Concerns
COStpre-mode1+ COStmodel choice+ COStpost-model

e Multiple model choices, accuracy vs cost

< Deadline

Solution Insights

Simple & fast factors can still yield optimization opportunities!
e Simple metrics + logistic regression oftline
® Performance buckets with meaningtul differences

o expected reward and cost if a model runs processes an input
o information for scheduling adaptive decisions

e Forecasting a future window using past buckets + rates

® Greedy algorithm assigns model routes for inputs by bucket

® [nput processing deadline

® Streaming throughput requirement

e Fallback strategy reduces accuracy

® Model accuracy is not uniform over distribution
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What's next?

More domains. We have results for at least two other modalities: time-series health data
and text-based question-answering. We also intend to expand this to more queries.

Face Recognition Acc. vs Time when Rate Changes
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Scheduling implementation. Bucket-based scheduling leaves opportunities to change
the parameters. We currently make a new forecast and compute a new schedule for every
input. What if we chose a different window size? What if we schedule multiple current
inputs together? What if we reuse a schedule for subsequent inputs?
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Quantifying uncertainty. Learned methods can offer measures of confidence,
from distance thresholds to bucketing logits. Can queries make greater use of
those probabilities, using lessons learned here in streaming and from elsewhere in
probabilistic databases? Can we provide bounds based on what information has
gone through the system so far? Can bounds be used as constraints in
optimization problems like this one, and for optimizing other query processing
problems like approximate query processing?
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