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Introduction & Motivation
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d Entity Matching (EM): Determines whether two
records refer to the same real-world entity; commonly
used in data integration.
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Distribution-Aware
Sample Selection
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J Embedding spaces form clustered regions that reflect
semantic similarity.

(1 BEACON exploits this geometry for informed sample
selection. It uses an ensemble of two selection methods:
» K-Center Greedy (KCG)
» Train-Validation Distribution Fitting (TVDF)

(J Domain-Aware EM: Trains domain-specific models (e.g.,
product categories) using both in-domain and selected
out-of-domain data.

J Key challenge: Selecting the most effective training
samples for a target domain.

Experiments & Results

1 Dataset: WDC Multi-Dimensional EM Benchmark [4]
1 Budgets: 1k-10k training samples

The BEACON Model

-1 Baselines compared:

» SPEC: Finetuning with domain-specific data only
» GEN: Finetuning with random samples

» MFSN [3]: The SOTA cross-domain EM method

» LLAMA [5]: A zero-shot LLLM baseline for EM

» JELLYFISH [6]: A fine-tuned LLM for EM

Budget-Aware DITTO [1]: PLM-Based EM
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(Jd BEACON: Distribution-aware, budget-aware framework
for low-resource EM.

d Guides out-of-domain sample selection using
embedding representations of record pairs

J Operates under a fixed annotation budget for model
fine-tuning.
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