

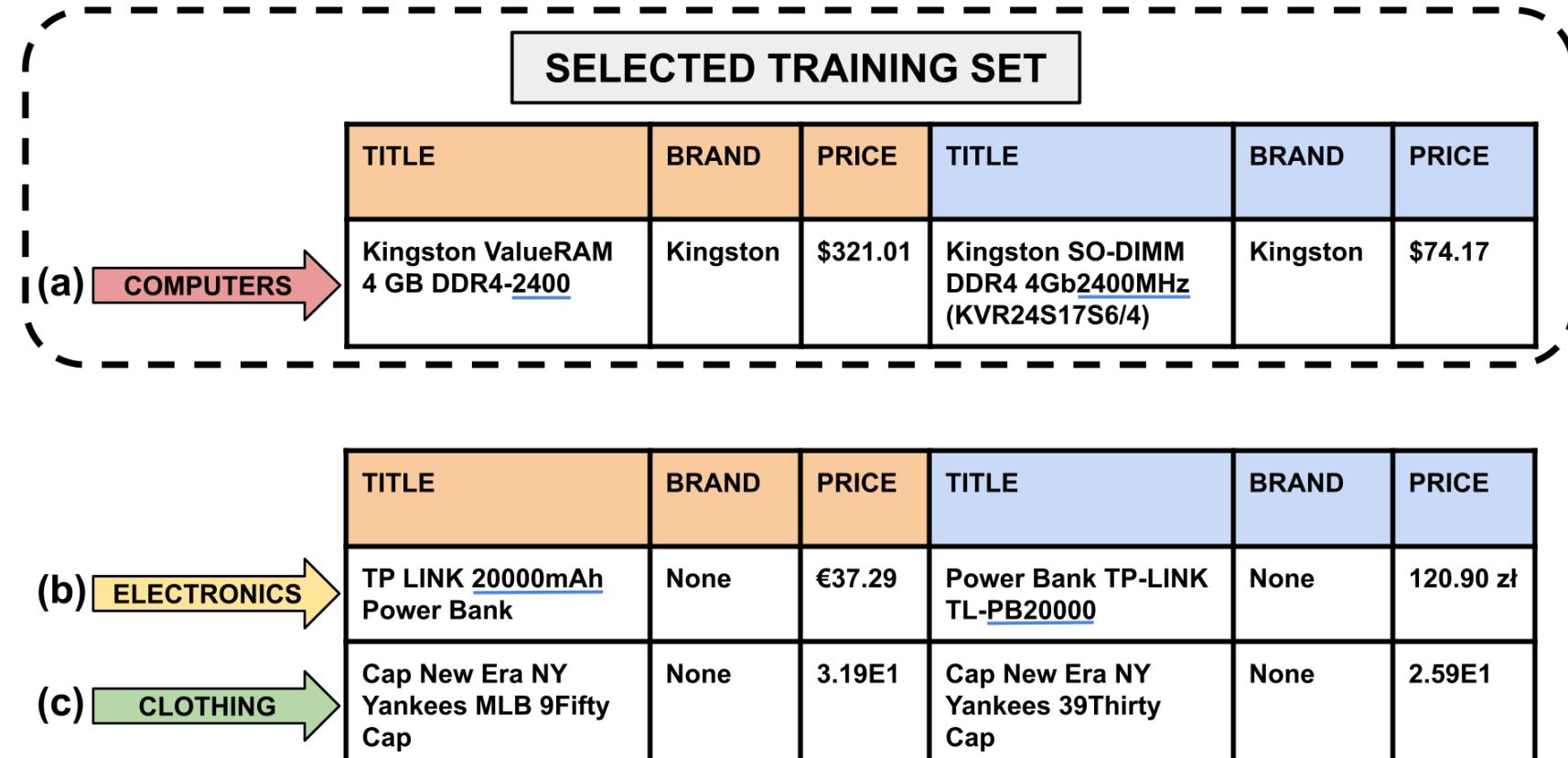
Budget-Aware Entity Matching Across Domains

Nick Pulsone, Prof. Roee Shraga, Greg Goren
 Email: nbpulsone@wpi.edu

Introduction & Motivation

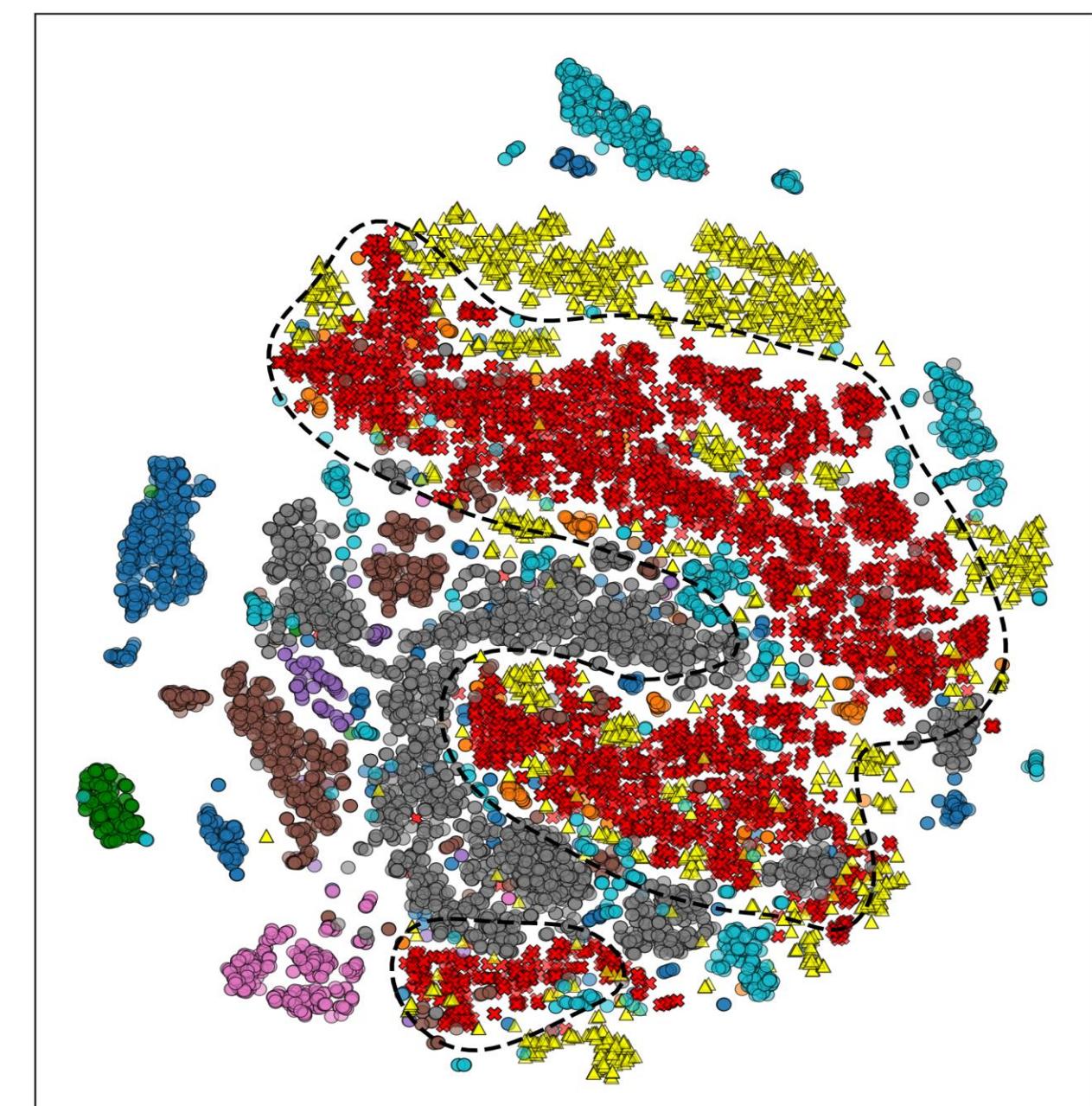
TITLE	BRAND	PRICE	TITLE	BRAND	PRICE
Kingston ValueRAM 4 GB DDR4-2400	Kingston	€21.95	(a)	Kingston	None
TP LINK 20000mAh Power Bank	None	€37.29			
Cap New Era NY Yankees 39Thirty Cap	None	3.19E1			

- Entity Matching (EM): Determines whether two records refer to the same real-world entity; commonly used in data integration.



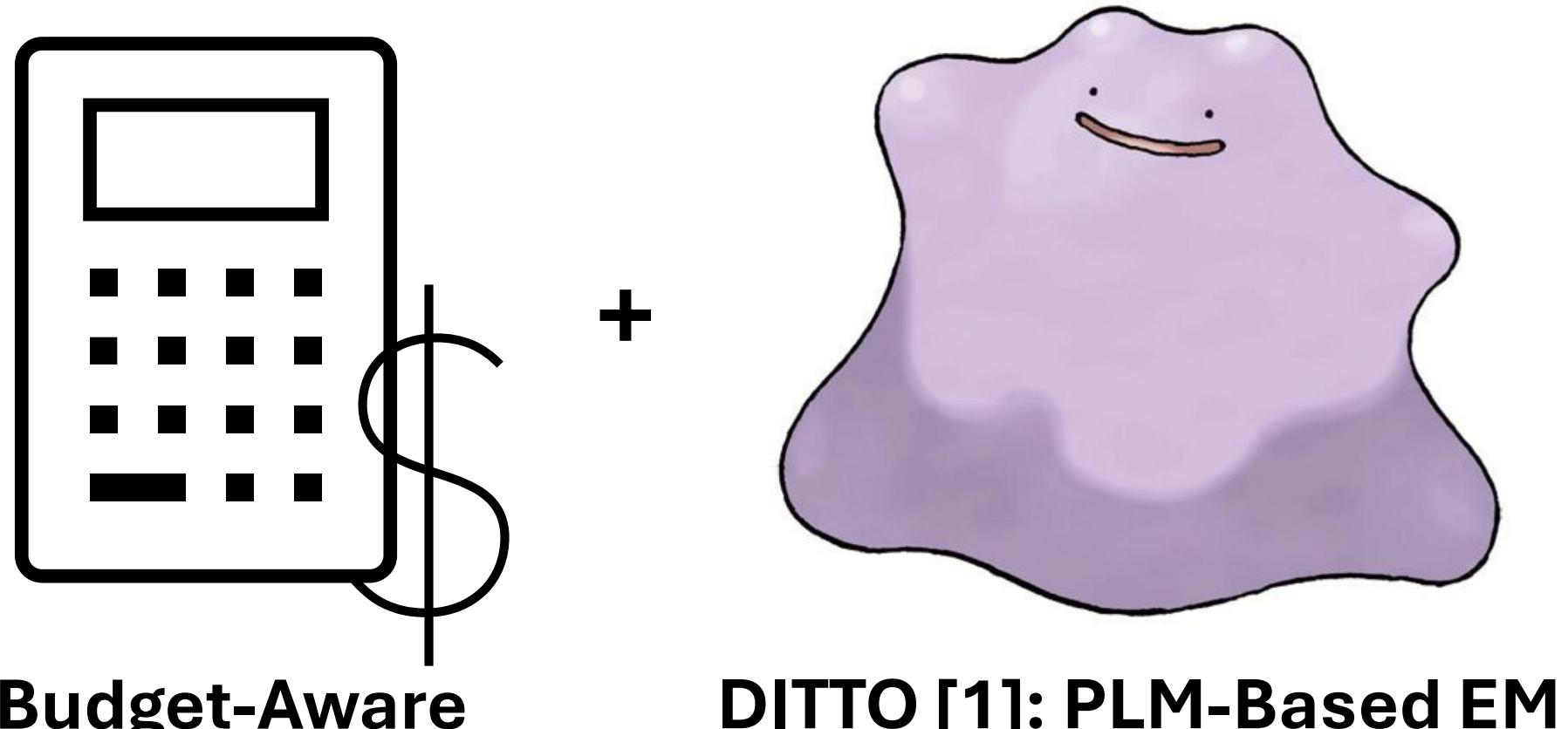
- Domain-Aware EM: Trains domain-specific models (e.g., product categories) using both **in-domain** and selected **out-of-domain** data.
- Key challenge: Selecting the most effective training samples for a target domain.

Distribution-Aware Sample Selection



- Embedding spaces form **clustered regions** that reflect semantic similarity.
- BEACON** exploits this geometry for informed sample selection. It uses an ensemble of two selection methods:
 - K-Center Greedy (KCG)
 - Train-Validation Distribution Fitting (TVDF)

The BEACON Model



- BEACON**: Distribution-aware, budget-aware framework for low-resource EM.
- Guides out-of-domain sample selection using **embedding representations** of record pairs
- Operates under a **fixed annotation budget** for model fine-tuning.

Experiments & Results

- Dataset**: WDC Multi-Dimensional EM Benchmark [4]
- Budgets**: 1k-10k training samples
- Baselines compared**:
 - SPEC**: Finetuning with domain-specific data only
 - GEN**: Finetuning with random samples
 - MFSN [3]**: The SOTA cross-domain EM method
 - LLAMA [5]**: A zero-shot LLM baseline for EM
 - JELLYFISH [6]**: A fine-tuned LLM for EM

Method	5.0k	10.0k	Mean	SD
SPEC	0.655	0.688	0.660	0.034
GEN	0.660	<u>0.709</u>	0.656	0.057
BEACON (ours)	0.758	0.769	0.752	0.025
MFSN [2]	0.658	0.631	0.637	0.020
LLAMA [5]	0.659	0.659	0.659	0.000
JELLYFISH [6]	0.692	0.692	0.692	0.000

Related Work		Domain-Aware	Budget-Aware
1	Deep Entity Matching with Pre-Trained Language Models (DITTO)	✗	✗
2	Deep Entity Matching with Adversarial Active Learning (DEAM)	✗	✓
3	Matching Feature Separation Network (MFSN)	✓	✗

BEACON (ours)

References

- [1] Yuliang Li et al. 2020. Deep entity matching with pre-trained language models. Proceedings of the VLDB Endowment 14, 1 (2020), 50–60.
- [2] Jiacheng Huang et al. 2023. Deep entity matching with adversarial active learning. The VLDB Journal 32, 1 (2023), 229–255.
- [3] Chenchen Sun, et al. 2024. Matching feature separation network for domain adaptation in entity matching. In Proceedings of the ACM Web Conference 2024. 1975–1985.
- [4] Ralph Peeters et al. WDC Products: A Multi-Dimensional Entity Matching Benchmark. arXiv:2301.09521
- [5] Abhimanyu Dubey et al. 2024. The llama 3 herd of models. arXiv e-prints (2024), arXiv-2407.
- [6] Haochen Zhang et al. 2023. Jellyfish: A large language model for data preprocessing. arXiv preprint arXiv:2312.01678 (2023)