
Jeffrey Tao, Yimeng Zheng, Natalie Maus, Haydn Jones, Jacob Gardner, Ryan Marcus | DB@Penn

Adversarial Benchmark Generation

[1] Tao et al., Learned Offline Query Planning via Bayesian Optimization, SIGMOD ‘25

[2] Marcus et al., Survivorship Bias in Industrial Database Workloads, CIDR ‘26

[3] Zeng et al., Adversarial Query Synthesis via Bayesian Optimization, ML for Systems@NeurIPS ‘25

[4] Wehrstein et al., JOB-Complex: A Challenging Benchmark for Traditional & Learned Query 
 Optimization, AIDB ‘25

[5] Marcus et al., Bao: Making Learned Query Optimization Practical, SIGMOD ‘21

Motivation

Generate benchmarks on other DBMSes to establish
generality of our technique

Compare performance bugs across systems

Investigate why the DBMS’s plan differs from the
witness

Future Work

Results

Surrogate Model

Observations

Uncertainty

Latent space

H
ea

dr
oo

m

DB

Proceeds in a loop of
1 5

6 Bayesian Optimization

2 Decode query

3 Decode plan

1 Acquire latent space point

Query

q1 q256...

Plan

p1 p64... q1 q256...

qwen-2.5-0.5B

embedding

grammar

(table1 (attr1 = 5)) (table 2)

SELECT count(*) 
FROM table1, table2, table3

WHERE attr1 = 5

table1table1

table4

table2

p1 p64...

Plan VAE

Decoder

Plan String1

Join Order Hint

3, 1, 2, 1

((table1 ⋈ table3) ⋈ table2)

4 Execute query and hintwith without

2a Soft tokens

2b Constrained decoding

2d Resolve SQL

2c Non-cross join

path through schema

5 Update surrogate

([q1,...,p64],

)headroom

speculative.tech/nedb2026

Figure 1. Our system generates a benchmark by searching the joint space of queries and plans using Bayesian Optimization.

Benchmarks help us build high-performance
systems. Recent SQL database benchmarks have
focused on realism. But we may be over-indexing
on optimizing what’s already fast2!

We propose a direct method3 for generating
maximally challenging benchmarks:

Propose potentially difficult queries

Use offline optimization1 to find faster plans

Maximize the DBMS’s under-performance

We model this as a black-box optimization
problem and leverage Bayesian optimization
techniques. This allows us to directly find
performance bugs within a given DBMS.

Figure 2. Our
method produces
more headroom
(difference in plan
latency) than prior
techniques4,5
because it directly
optimizes for
difference between
the witness plan
and the DBMS
query optimizer’s
plan.

Figure 3. Left: We conduct optimization runs for absolute (DBMS - witness) and relative (DBMS / witness) difference, taking all queries

with absolute difference > 1s. Right: Both optimization targets find many overlapping and some unique queries.

table3

