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Motivation

Generate benchmarks on other DBMSes to establish 
generality of our technique

Compare performance bugs across systems

Investigate why the DBMS’s plan differs from the 
witness
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Figure 1. Our system generates a benchmark by searching the joint space of queries and plans using Bayesian Optimization.

Benchmarks help us build high-performance 
systems. Recent SQL database benchmarks have 
focused on realism. But we may be over-indexing 
on optimizing what’s already fast2!



We propose a direct method3 for generating 
maximally challenging benchmarks:


Propose potentially difficult queries

Use offline optimization1 to find faster plans

Maximize the DBMS’s under-performance



We model this as a black-box optimization 
problem and leverage Bayesian optimization 
techniques. This allows us to directly find 
performance bugs within a given DBMS.

Figure 2. Our 
method produces 
more headroom 
(difference in plan 
latency) than prior 
techniques4,5 
because it directly 
optimizes for 
difference between 
the witness plan 
and the DBMS 
query optimizer’s 
plan.

Figure 3. Left: We conduct optimization runs for absolute (DBMS - witness) and relative (DBMS / witness) difference, taking all queries

with absolute difference > 1s. Right: Both optimization targets find many overlapping and some unique queries.
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