Table Unionability Is Uncertain and That’s
Why Humans and Al Need Each Other

Based on: Nina Kiimenkova, Sreeram Marimuthu, Roee Shraga.
“Humans, Machine Learning, and Language Models in Union: A Cognitive Study on Table Unionability”. HILDA at SIGMOD 2025

1. Motivation & Background

Table Unionability: a fundamental challenge in data discovery - identifying tables that can be meaningfully combined [3].
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2. Study Design and Behavioral Observations

Correctness, Confidence Level vs Internally Scaled Decision Time
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3. Approach: Calibrating Human Table Unionability Labels

Aggregated Features - Accuracy across Survey Versions
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Metric: accuracy (Yes =1, No = 0)

4. Experiments and Results
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