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Table Unionability: a fundamental challenge in data discovery - identifying tables that can be meaningfully combined [3].

Evolving 
Definitions:
• Traditional
• Relaxed [1]
• Relation-based [2]
• Context-aware [3]

Cognitive Challenge:
• Semantic & Context 

interpretation
• Domain knowledge
• Judgment under 

ambiguity
Can we use human input patterns to 

improve the quality of table unionability 
judgments?

2. Study Design and Behavioral Observations

Tables from 
UGEN dataset [4]

4 survey versions

Unionability 
judgment

Confidence

Explanation by 
userBehavioural tracking: clicks, decision time, 

interaction patterns

3. Approach: Calibrating Human Table Unionability Labels

4. Experiments and Results

• Confidence decreases with decision time (0.79 → 0.74)
• Accuracy drops with longer decisions (0.66 → 0.59)
→ Suggests overthinking may hurt performance
→ Longer deliberation = harder cases

11 Initial features 33 Engineered 
features

6 Aggregated 
subsets

Train classifiers 
(LR, KNN, RF, 

XGB)

Calibrated labels

Goal: predict if a human’s answer is correct → cleaner labels
Metric: accuracy (Yes = 1, No = 0)

Feature Group Description
Click Click behavior metrics
User Demographics & 

metadata
Human-Labels Participant response 

items
Quantified-
Human-Labels

Group-level correctness

Decision-Time Temporal decision 
measures

Confidence Level Self-reported confidence
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Decision 

Time 
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+11.6% 
Confidence 

Level
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Quantified 

Labels

-18.1% User 
Demographics 

only

Survey Human ML (All Features) LLM Human+LLM

Acc. Majority Acc. Actual Added Ctx.

V1 0.70 1.00 (+42.2%) 0.83 (+17.8%) 0.63 (-11.1%) 0.75 (+6.7%)

V2 0.58 0.50 (-13.3%) 0.64 (+10.1%) 0.50 (-13.4%) 0.63 (+8.3%)

V3 0.58 0.88 (+52.2%) 0.88 (+52.2%) 0.63 (+8.7%) 0.88 (+52.2%)

V4 0.59 0.63 (+6.1%) 0.73 (+24.2%) 0.63 (+6.1%) 0.75 (+27.3%)

Avg. 0.61 0.75 (+22.7%) 0.77 (+25.5%) 0.59 (-2.8%) 0.75 (+22.7%)

Table 1: Unified results across survey versions. Human majority, ML, LLM, and Human+LLM accu-
racies are reported relative to Human-Actual (raw human labels).

to compare human and LLM-based unionability decisions. We evaluated the model under multiple
conditions, ranging from table-only prompts to prompts augmented with human-derived context such
as majority votes, average confidence, and decision time.

Results & Key Takeaways
Table 1 compares raw human judgments, human aggregation, ML-enhanced labels, and LLM-based
decisions across survey versions. Raw human accuracy averages 0.61, reflecting the inherent ambiguity
of table unionability. Majority voting consistently improves performance to 0.75 (+22.7%), with
especially large gains in more challenging versions (e.g., V3). ML models that incorporate behavioral
and meta-cognitive features achieve the highest average accuracy of 0.77 (+25.5%), demonstrating
the value of calibrating human judgments rather than treating them as fixed ground truth. LLM-
only performance varies by version and underperforms on average (0.59), while augmenting LLMs
with human-derived context reliably improves accuracy, matching human majority performance and
outperforming both raw human and LLM-only settings in several cases.

Overall, these results suggest that table unionability benefits from hybrid approaches: human judg-
ments provide valuable but noisy signals, machine learning e!ectively calibrates these signals, and
LLMs are most e!ective when guided by structured human context. Together, these findings motivate
human-in-the-loop systems that deliberately combine human behavior, learned models, and language-
based reasoning for more reliable data discovery.
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