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Adaptive load balancing in DAG-based consensus protocols
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What is BFT? Byzantine Fault Tolerance (BFT) ensures that a distributed system (like a 
blockchain or database) remains consistent even if some nodes fail or act maliciously.
The Traditional Bottleneck: Classic protocols rely on a single leader to order 
transactions and broadcast data. This creates a sequential choke point that limits 
scalability.
The DAG Innovation: Modern DAG-based consensus protocols [1] decouple data 
dissemination from ordering. This allows nodes to propose blocks in parallel based on 
batch digest, drastically increasing throughput.
DAG of certificates: Unlike linear chains, each certificate is a signed block containing 
batches of transactions that are partially ordered, allowing for high parallel throughput 
before a total order is determined.
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• Batch Routing: We introduce a 
Batch Router in the worker node 
that enables round-robin 
submission. This addresses 
worker-level imbalance, keeping 
committed throughput high.

• Internal Routing: Execution routing 
occurs internally in each validator 
party a batch is broken into sub-
batches with sequence numbers [7] 
to ensure total ordering.

• Distributed transactions 
execution without 2PC: once the 
certificates are totally ordered, we 
rely on the deterministic ordering [4] 
to execute distributed transactions.

• The Execution Bottleneck: While 
committed TPS is stable, End-to-End TPS 
drops by 80% with just 10% distributed 
transactions. The impact of skew shifts 
to the execution layer.

• Two-Tier Strategy[2]: We use a lightweight metric (Queue 
Length) to trigger a heavy-duty load balancing algorithm
• Tier 1: Monitors the imbalance ratio of the sum of queue 

lengths on each executor.
• Tier 2: Utilizes Clay[5] (greedy heuristic) or Schism[6] 

(hypergraph partitioning) for load balancing.
• We found that weighting queue length higher than execution 

count is essential for vertex weighting. Distributed transactions 
stall the queue, so low execution count ≠ low load in concurrent 
execution engine.

• Migration as a Transaction: State transfer is treated as a 
control request ordered within the normal transaction stream 
and routed to the source and destination executor.
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Zero-Downtime Migration: By allowing a 
control request to jump queue and 
implementing live migration (e.g., 
Squall[3], MgCrab[8]), we can enable early 
state transfer without pausing execution.
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Validator Balancing: Inter-node balancing 
with algorithms that tolerate malicious 
behavior, possibly incorporating Machine 
Learning.

Which validator’s worker should a client submit its requests to?
How do we prevent stragglers from stalling the DAG?
Does fixing the worker layer break the execution layer?
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• Topology: Given that star topologies are inherently un-partitionable, is it valid to assume parameterized 
structures like multi-clusters, or must a general-purpose system solve for the worst-case graph?

• Throughput: Since a client broadcast to f+1 validators significantly reduces throughput via 
deduplication, should we shift to optimistic submission (send to one with timeout) despite the risk of 
higher tail latency?

• Workloads: While Smallbank is the standard benchmark, is it sufficient to prove our contribution, or 
are real-world traces required to truly stress-test execution bottlenecks?

• Rebalancing parameters: Load balancing relies heavily on accurate cost parameters. Is the complexity 
of adaptive online tuning worth the overhead compared to static configuration, and does it offer 
sufficient research novelty?

• Contribution: Does the integration of deterministic execution, load balancing, and live migration 
constitute a cohesive contribution, or does it risk over-engineering the system?

Proposed Solution: Executors load balancing and state migration
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