Adaptive load balancing in DAG-based consensus protocols

Zhen Ping Khor (University of Pennsylvania)®* Mohammad Amiri (Stony Brook University)

Boon Thau Loo (University of Pennsylvania)

What is BFT? Byzantine Fault Tolerance (BFT) ensures that a distributed system (like a

Round 1 Round 2

Round 3 Round 4

&

Penn

UNIVERSITY 0f PENNSYLVANIA

blockchain or database) remains consistent even if some nodes fail or act maliciously. / — \
The Traditional Bottleneck: Classic protocols rely on a single leader to order Certificate \
transactions and broadcast data. This creates a sequential choke point that limits 4 Block I
Scalability. Validator 2 (Batch 1) (Batch A (Batch ??
The DAG Innovation: Modern DAG-based consensus protocols [' decouple data " e o9
dissemination from ordering. This allows nodes to propose blocks in parallel based on tx2 tx6 tx10
. . . . Validator 3 tx3 tx7 tx11
batch digest, drastically increasing throughput. /
DAG of certificates: Unlike linear chains, each certificate is a signed block containing Q “ “ j/
batches of transactions that are partially ordered, allowing for high parallel throughput _;4at0r 4
before a total order is determined.
Which validator’s worker should a client submit its requests to? Primary Node
Motivation How do we prevent stragglers from stalling the DAG? Client
Does fixing the worker layer break the execution layer? [Certificate]
Architecture and The Execution Bottleneck
Dispatcher
.) Throughput vs Load Imbalance
* Batch Routing: We introduce a 200,000 I
Batch Router in the worker node 175,000 Worker Nodes
that enables round-robin B 150,000 (Requests
.. : 3 dissemination,
submission. This addresses = 125,000 storage) seq 1 seq 2
worker-level imbalance, keeping £ — Sommitted TPS . &
]) $100,000 End-to-end TPS without distributed tx
committed throughput high. s —— End-to-end TPS with 10% distributed tx
. . . = 75,
* Internal Routing: Execution routing = Worker 1 Worker 2 Worker 3
occurs internally in each validator @ |
party a batch is broken into sub- 25,000, e
batches with sequence numbers [7! of | | . — Batch Routing of
: 10 - %0 9 sub-batches
to ensure total ordering. Load Imbalance (%)
) D'Str'b,Uted ’fr:nsac;t;%r.ls " * The Execution Bottleneck: While
execution without 2PC:oncethe ., mitted TPS is stable, End-to-End TPS |
celrtlflcart]es are totally ordered, we[4] drops by 80% with just 10% distributed Exl\elzc;non Nl N a
relyonthe d.ete.rm|n|st|c orderl.ng transactions. The impact of skew shifts 0aes Batch Batch Batch
to execute distributed transactions. . 1o o acution layer. (Causal order Executor 1 Executor 2 Executor 3

processing)

Proposed Solution: Executors load balancing and state migration

Request queue - - -

* Two-Tier Strategy!?l: We use a lightweight metric (Queue
Length) to trigger a heavy-duty load balancing algorithm
* Tier 1: Monitors the imbalance ratio of the sum of queue

lengths on each executor.

 Tier 2: Utilizes Clay!®! (greedy heuristic) or Schisml®!
(hypergraph partitioning) for load balancing.
* We found that weighting queue length higher than execution

countis essential for vertex weighting. Distributed transactions
stall the queue, so low execution count # low load in concurrent

execution engine.

* Migration as a Transaction: State transfer is treated as a
control request ordered within the normal transaction stream
and routed to the source and destination executor.

Ongoing Work

Zero-Downtime Migration: By allowing a

control request to jJump queue and
implementing live migration (e.g.,

Squalll®l, MgCrabl!8l), we can enable early
state transfer without pausing execution.

Future Work

Validator Balancing: Inter-node balancing
with algorithms that tolerate malicious
behavior, possibly incorporating Machine

Batch Executor 1 0 State_transfer

—

A.send(C) [A.deposit(100)

k @ State_writeback

T\ @ Execute

Batch Executor 2

A.send(C)

C.deposit(20)

B |B.check balance()

(existing queue) | D.migrate_to(E2)

And State Migration

Open Questions

Distributed transactions execution without 2PC

Topology: Given that star topologies are inherently un-partitionable, is it valid to assume parameterized
structures like multi-clusters, or must a general-purpose system solve for the worst-case graph?
Throughput: Since a client broadcast to f+1 validators significantly reduces throughput via
deduplication, should we shift to optimistic submission (send to one with timeout) despite the risk of

higher tail latency?

Workloads: While Smallbank is the standard benchmark, is it sufficient to prove our contribution, or
are real-world traces required to truly stress-test execution bottlenecks?
Rebalancing parameters: Load balancing relies heavily on accurate cost parameters. Is the complexity
of adaptive online tuning worth the overhead compared to static configuration, and does it offer

sufficient research novelty?

Contribution: Does the integration of deterministic execution, load balancing, and live migration
constitute a cohesive contribution, or does it risk over-engineering the system?

Learning.
1. Danezis, et al. "Narwhal and tusk: A DAG-based mempool and efficient BFT consensus." EuroSys ‘22. 5. Serafini, et al. "Clay: Fine-grained adaptive partitioning for general database schemas." VLDB*16.
‘ Reference 2. Taft, et al. "E-store: Fine-grained elastic partitioning for distributed transaction processing systems" VLDB‘14. 6. Carlo, et al. "Schism: a workload-driven approach to database replication and partitioning" ." VLDB*10.
3. Elmore, et al. "Squall: Fine-grained live reconfiguration for partitioned main memory databases." SIGMOD*15. 7. Kniep, et al. "Pilotfish: Distributed Execution for Scalable Blockchains" FC*25.
4.

Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems.” SIGMOD 12

8. Lin, etal. "MgCrab: transaction crabbing for live migration in deterministic database systems" ." VLDB19.

