
Zhen Ping Khor (University of Pennsylvania)* Mohammad Amiri (Stony Brook University) 
Boon Thau Loo (University of Pennsylvania)

Adaptive load balancing in DAG-based consensus protocols

Primary Node

Certificate

Dispatcher

Worker 1 Worker 2 Worker 3

seq 1

Batch 
Executor 1

Batch 
Executor 2

Batch 
Executor 3

seq 3 seq 2

Worker Nodes
(Requests 

dissemination, 
storage)

Execution 
Nodes

(Causal order 
processing)

Client

What is BFT? Byzantine Fault Tolerance (BFT) ensures that a distributed system (like a 
blockchain or database) remains consistent even if some nodes fail or act maliciously.
The Traditional Bottleneck: Classic protocols rely on a single leader to order 
transactions and broadcast data. This creates a sequential choke point that limits 
scalability.
The DAG Innovation: Modern DAG-based consensus protocols [1] decouple data 
dissemination from ordering. This allows nodes to propose blocks in parallel based on 
batch digest, drastically increasing throughput.
DAG of certificates: Unlike linear chains, each certificate is a signed block containing 
batches of transactions that are partially ordered, allowing for high parallel throughput 
before a total order is determined.

Certificate
Block

Batch 1

tx1
tx2
tx3
…

Batch 2

tx5
tx6
tx7
…

Batch 3

tx9
tx10
tx11
…

• Batch Routing: We introduce a 
Batch Router in the worker node 
that enables round-robin 
submission. This addresses 
worker-level imbalance, keeping 
committed throughput high.

• Internal Routing: Execution routing 
occurs internally in each validator 
party a batch is broken into sub-
batches with sequence numbers [7] 
to ensure total ordering.

• Distributed transactions 
execution without 2PC: once the 
certificates are totally ordered, we 
rely on the deterministic ordering [4] 
to execute distributed transactions.

• The Execution Bottleneck: While 
committed TPS is stable, End-to-End TPS 
drops by 80% with just 10% distributed 
transactions. The impact of skew shifts 
to the execution layer.

• Two-Tier Strategy[2]: We use a lightweight metric (Queue 
Length) to trigger a heavy-duty load balancing algorithm
• Tier 1: Monitors the imbalance ratio of the sum of queue 

lengths on each executor.
• Tier 2: Utilizes Clay[5] (greedy heuristic) or Schism[6] 

(hypergraph partitioning) for load balancing.
• We found that weighting queue length higher than execution 

count is essential for vertex weighting. Distributed transactions 
stall the queue, so low execution count ≠ low load in concurrent 
execution engine.

• Migration as a Transaction: State transfer is treated as a 
control request ordered within the normal transaction stream 
and routed to the source and destination executor.

A A.send(C) A.deposit(100)

B B.check_balance()

D D.migrate_to(E2)(existing queue)

Batch Executor 1

· · · · 

3

1 State_transfer

State_writeback

Per-account Lock

Zero-Downtime Migration: By allowing a 
control request to jump queue and 
implementing live migration (e.g., 
Squall[3], MgCrab[8]), we can enable early 
state transfer without pausing execution.

1. Danezis, et al. "Narwhal and tusk: A DAG-based mempool and efficient BFT consensus." EuroSys ‘22.
2. Taft, et al. "E-store: Fine-grained elastic partitioning for distributed transaction processing systems" VLDB‘14.
3. Elmore, et al. "Squall: Fine-grained live reconfiguration for partitioned main memory databases." SIGMOD‘15.
4. Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems.” SIGMOD ‘12

Validator Balancing: Inter-node balancing 
with algorithms that tolerate malicious 
behavior, possibly incorporating Machine 
Learning.

Which validator’s worker should a client submit its requests to?
How do we prevent stragglers from stalling the DAG?
Does fixing the worker layer break the execution layer?

Motivation

Architecture and The Execution Bottleneck

5. Serafini, et al. "Clay: Fine-grained adaptive partitioning for general database schemas." VLDB‘16.
6. Carlo, et al. "Schism: a workload-driven approach to database replication and partitioning" ." VLDB‘10.
7. Kniep, et al. "Pilotfish: Distributed Execution for Scalable Blockchains" FC‘25.
8. Lin, et al. "MgCrab: transaction crabbing for live migration in deterministic database systems" ." VLDB‘19.

Reference

• Topology: Given that star topologies are inherently un-partitionable, is it valid to assume parameterized 
structures like multi-clusters, or must a general-purpose system solve for the worst-case graph?

• Throughput: Since a client broadcast to f+1 validators significantly reduces throughput via 
deduplication, should we shift to optimistic submission (send to one with timeout) despite the risk of 
higher tail latency?

• Workloads: While Smallbank is the standard benchmark, is it sufficient to prove our contribution, or 
are real-world traces required to truly stress-test execution bottlenecks?

• Rebalancing parameters: Load balancing relies heavily on accurate cost parameters. Is the complexity 
of adaptive online tuning worth the overhead compared to static configuration, and does it offer 
sufficient research novelty?

• Contribution: Does the integration of deterministic execution, load balancing, and live migration 
constitute a cohesive contribution, or does it risk over-engineering the system?

Proposed Solution: Executors load balancing and state migration

Ongoing Work Open Questions

Future Work

Batch Routing of 
sub-batches

Round-robin 
submission

C A.send(C) C.deposit(20)

E · · ·

D D.migrate_to(E2)

Batch Executor 2

· · · · 

2 Execute

Request queue · · · 

Distributed transactions execution without 2PC
And State Migration


