
VectraFlow
An AI-Augmented Data-Flow System

Shu Chen, Alexander Lee, Duo Lu,
Deepti Raghavan, Malte Schwarzkopf, Uğur Çetintemel

1

VectraFlow

A data-flow engine

that natively supports modern ML models with

an extended relational model for unstructured and multi-modal data processing

Supports stream and batch processing

2

Lighthouse Domain: Medical Data Lakes
(collaboration with the RI Hospital)

Example apps:

● Medical data summarization
● Early warning system
● Compliance monitoring
● Automatic report generation

Key requirements:

● Integrate ML models (including LLMs)
● Support stream and batch oriented processing
● Ensure high reliability and scalability

3

Data and Query Model

Classical data-flow architecture with an extended relational model:

● Data types
○ Vector (sparse and dense)
○ Unstructured (e.g., free-form text, images)

● Manipulation operators
○ E.g., convert data to vectors, cluster vectors

● Semantic relational operators
○ Based on vectors, LLM prompts, and general ML models
○ Retain general semantics of relational operators

4

Example Semantic Operators

iV-Filter(): applies embedding similarity to select incoming tuples (Lu et al., 2025)

E.g., identify incoming patient records that are similar to historical patient records

P-Agg(): prompts an LLM to aggregate over a window of tuples (Patel et al., 2024)

E.g., summarize over multiple medical documents

M-Filter(): invokes a classifier to select tuples based on their attributes (Lu et al., 2025)

E.g., identify abnormalities in medical imaging

…

5

Outline

Novel semantic operators + optimizations (iV-Filter)

Reliability features (integrity constraints)

Working prototype

6

iV-Filter (Lu et al., 2025)
Motivation: continuously filter incoming vectors on the stream

In-memory table stores base vectors (i.e., base queries)

Each base vector has a radius (i.e., similarity threshold)

iV-Filter: selects input vectors that fall within the radii of base vectors

 and returns the corresponding base vector IDs

Use case: early warning systems

identify incoming patient records that are similar to historical patient records

Base vector

Input vector

Radius

7

iV-Filter Optimizations

Centroid OPList

C

b9 b1 b7 b3

C

C

b2 b5

b4 b6 b8

b1

b3

b7

b9

Overlap Distance

Centroid OPList (Overlapped Partition List):

● Insight: base vectors containing the incoming vector must overlap
● OPList: list of base vectors that overlap with the given base vector
● Centroid OPList: cluster base vectors and assign a radius + OPList to each centroid

Centroid

8

Search: assign input vector to the nearest centroid and scan
its OPList for base vectors that contain the input vector

Other optimizations: batching, sorting, bucketing, early
stopping

Semantic Integrity Constraints

Problem: semantic operators may yield erroneous results

Solution: guardrails around semantic operators to enforce data consistency

User-specified predicates on output tuples

Can apply constrained decoding for certain predicates

Otherwise,

if tuple violates predicates, retry operator

if specified retry threshold is reached, drop tuple

9

Integrity Constraint Classes

IC Class Use Case

Domain Medication dose stays within clinically safe
boundary

Inclusion/exclusion Generated business report doesn’t contain
undesirable language

Grounding Extracted test records are present in the
original medical document

Check <predicate> Evaluate arbitrary predicates (e.g., simple
statements, UDFs)

10

Grounding Constraints

Output values from attribute-generating semantic operators are derived from:

● Knowledge internal to the LLM (i.e., parametric knowledge)
● Knowledge external to the LLM (i.e., non-parametric knowledge)

○ Input tuples to the system
○ Returned tuples from in-memory tables

Verification use cases:

● Extractive (e.g., medical test result extraction)
● Abstractive (e.g., medical data summarization)

Want: attribute value is grounded in its source tuple(s)

11

} source tuples

Enforcing Grounding Constraints

Want: attribute value is grounded in its source tuple(s)

● Recursively apply checks to all attributes in the attribute’s lineage
● Check: output value is grounded in input value(s)
● Require different grounding semantics depending on the use case

12

Semantics Verification Mechanism Use Case

Match Exact keyword match Extractive

Similarity Similarity score Abstractive

Model LLM evaluator Extractive + abstractive

Demo!

13

Demo: Medical History Summarization

src V-TopK

db

(<patient_id>,
 <problems>)

Retrieve
patient’s
relevant
medical
records

Patient
medical
records

Input stream
of patient
IDs and

problems

P-Map Sort P-Map P-Agg

[(<med_record>), …]

Extract date
from

medical
record

snk

Sort by date

(<patient_id>,
 <med_record>)

(<patient_id>,
 <med_record>,
 <date>)

(<patient_id>,
 <med_record>,
 <date>)

Extract test
results from

medical
record

(<patient_id>,
 <med_record>,
 <date>,
 <test_results>)

Summarize
medical

records and
concatenate
dates and
test results

(<patient_id>,
 <summary>,
 <dates>,
 <test_results>)

Apply grounding constraints

14

Demo: Early Warning System

src iV-Filter snk

db

Input
stream of

patient
IDs and
medical
records

(<patient_id>, <med_record>)

Historical records
of patients who
progressed to a
particular health
condition (e.g.,
hypertension)

(<similar_patient_ids>)

Select patient
IDs with similar

historical records
to the input

medical record

(<patient_id>, <med_record>, <similar_patient_ids>)

15

Acknowledgements

Special thanks to other members of the team who contributed to this work:

Justin Chan, Simeng Feng, Michael Fu, Nicolas Kim, Evan Li, Akshay Mehta, Weili
Shi, Franco Solleza, Jonathan Zhou

16

