
InterSystems IRIS:
Achieving Speed and Usability in
an Integrated Vector Database

NEDB 2025

David Van De Griek, Boya Song, Philip Miloslavsky, Yuchen Liu,
Yiwen Huang, Mark Hanson, Jeff Fried, Dmitriy Bochkov

Overview

• New design for Integrated Vector DB

• Focused on RAG applications

• Based on:
• multimodel core (“common data plane”)
• vector data type and vector operations
• compact storage model
• vector-aware SQL optimizer
• embedded Python

• Commercially in use

Vector Database as used in RAG applications

and reranking

Specialized and Integrated Vector Databases

Criteria Specialized Vector Databases Integrated Vector Databases

Examples Pinecone, Milvus, Weviate PPASE, PostgreSQL+pgvector,
ElasticSearch

InterSystems IRIS

Ease of Use Designed specifically for vector data
Integrated into existing databases,

leveraging familiar interfaces and tools

Footprint
Typically requires additional

infrastructure and resources

Utilizes existing database infrastructure,

reducing the need for additional resources

Performance
Optimized for high-dimensional

vector searches, often with

advanced indexing techniques

Performance can vary based on

the underlying database

but benefits from integrated indexing

Smart Data Fabric
Single ecosystem to solve complex data problems

Interoperability
Low-code integration, workflow & API mgmt

Horizontal Scale-out
Distributed, coherent cache at massive scale

InterSystems IRIS Architecture Layers

Common Data Plane
High performance, multi-model, multi-lingual

Analytics & AI
Run close to the data, using familiar tools

The Common Data Plane

^global(<key1>,<key2>,…) = $encoding(<val1>,<val2>,…)

Document

Object Relational Cube

Time Series Data Frame Vector

Fast, Flexible Data Encodings

$list("lcars",1138,88.0,…)

$vector(4.8,15.1,6.23,…)

$pva({ "id":10816,
 "fname":"roy",
 … })

$bit(1,0,1,0,1,0,…)

Lists Vectors Documents Bitmaps

Projections

Document Relational

^wave(202407, “ICU5”, 123) = $list(“Smartlinx5”, “BP3”, 8605)
^wave(202407, “ICU5”, 123, 1, “ts”) = $list(“2024-07-04 10:12:03.642”, 3.333)
^wave(202407, “ICU5”, 123, 1, “v”) = $vector(7200, 7300, 7700, 8500, …)

PUT GET INSERTSELECT

{
“location”: “ICU5”,
“collector_name”: “Smartlinx5”,
“sensor_name”: “BP3”,
“bed_id”: 8605,
“readings”: [
 { “start_time”: “2024-07-04 10:12:03.642”,
 “interval”: 3.333,
 “values”: [7200, 7300, 7700, 8500, …
] }
 , …]
}

Location Sensor Date Time Value

ICU5 BP3 2024-07-04 10:12:03.642 7200

ICU5 BP3 2024-07-04 10:12:06.975 7300

ICU5 BP3 2024-07-04 10:12:10.308 7700

ICU5 BP3 2024-07-04 10:12:13.641 8500

… … … … …

ICU5 BP3 2024-07-04 10:12:16.974 9100

9100,

9100,

Unified, versatile data engine that supports vector fields and vector
indices (e.g. HNSW index)

• Unified storage for data and index vector data, columnar data and regular data
• Minimize data duplication
• Index/field size not limited by memory size

• Unified SQL engine with great query processing capabilities, including
• Transactions
• Full SQL Support
• Filtered Vector Search
• Vector Range Search
• Vector Range Join
• Vector with Fulltext Search
• Semantic Join

Design Goal

Storage model for SQL based on native $vector data type to deliver key analytical
querying facilities needed for next-generation Data Warehouses, Lakes and
Lakehouses

• Aligns physical table layout with typical analytical access patterns
• $vector language feature designed to support translytical workloads
• Order of magnitude speedup for analytical queries thanks to SIMD use and vectorized

execution
• Schema flexibility - mixing row & column storage - is a key InterSystems IRIS

differentiator
• Indexing flexibility – can use a columnar index on row-based storage, etc.

Vector Storage Model evolved from columnar use cases

Vector fields stored as a collection of chunked vectors, 64K values per chunk.
Metadata (Columnar Index Map and Columnar Data Map) support fast sorting and
SIMD operations.

Special %Vector type: %Embedding

Flexible design, including ability to accommodate VERY long vectors
 Store long vectors in their own globals for performance and footprint

 Provision for managing space/precision tradeoffs
 $vector can be integer, decimal FP; supports sparse encodings and
 different storage size magnitude for both sparse and dense encodings
 new DataDefinitionLocation property

Storage design

Fast vector operations

• Numeric Operations​ (scalar and vector-wise)
o $VECTOROP("+" | "-" | "/" | ... | "cosine" | "dot-product" , vector, vector | scalar, bitmap) returns vector

• String Operations​ (scalar and vector-wise)
o $VECTOROP("_" | "lower" | "substring" | ... , vector, vector | scalar, bitmap) ​ returns vector

• Filter Operations​ (scalar and vector-wise)
o $VECTOROP("=" | ">" | "<" | ... | "defined" | "undefined" , vector, vector | scalar, bitmap) returns bitmap ​

• Aggregate Operations​
o $VECTOROP(“count” | “max” | “min” | “sum”, vector, bitmap)​ returns scalar

• Grouping Operations​
o $VECTOROP("group", “count” | “max” | “min” | “sum”, vector, bitmap, list) modifies list​ ​

• Miscellaneous Operations​
o $VECTOROP("convert", vector)
o $VECTOROP("mask", vector, scalar)
o $VECTOROP("positions", vector, bitmap)
o $VECTOROP("bytesize", vector)
o ...

• We can support vector storage and operation on high-dimensional
vectors thanks to the fast $vectorop

• Runtime of vector operation increases sub-linearly

Vector Dimensionality and Performance

Query processing implementation: Unified SQL Engine

• Unified Storage Model
• comparable access cost

• for any storage type

• for any index type

• Universal Query Optimizer
• pre-optimizer query rewrite
• awareness of vector algorithms
• multi-index plans

• Adaptive Parallel Execution
• data format agnostic

Reference: Dong Y, Xiao C, Nozawa T, Enomoto M, and Oyamada M DeepJoin:
joinable table discovery with pre-trained language models Proc. VLDB Endow.
Digital Library

• Efficient integration
of vector/embedding data type

• Example: Semantic Join
• join with a similarity condition on word

embeddings [1]

• tolerates misspellings and different
formats to deliver more join results

https://dl.acm.org/doi/10.14778/3603581.3603587

Semantic Join in SQL

select
 FilmA.title Film1,
 FilmB.title Film2,
 ReviewA.star_rating * ReviewB.star_rating CombinedRating

from Cinema.Film FilmA
join Cinema.Film FilmB
 on (vector_cosine(FilmA.overview_embedding, FilmB.overview_embedding)>.55)
join Cinema.Review ReviewA on (FilmA.imdb_id=ReviewA.imdb_id)
join Cinema.Review ReviewB on (FilmB.imdb_id=ReviewB.imdb_id)
where FilmA.imdb_id<FilmB.imdb_id

 and FilmA.release_year>1950
 and FilmB.length>60

order by CombinedRating desc, FilmA.imdb_id, FilmB.imdb_id

Semantic Join Result

• Implemented HNSW index according to Malkov 2016
• No need to store the vectors in the index as the SQL engine can

access the original vector field

• Challenge: needs to be compatible with parallel INSERT

Query processing implementation: HNSW index

Reference: Yury Malkov, Dmitry A. Yashunin,
Efficient and Robust Approximate Nearest
Neighbor Search Using Hierarchical
Navigable Small World Graphs
IEEE TPAMI 2016 arXiv link

https://arxiv.org/abs/1603.09320

SerenityGPT – built on InterSystems IRIS & Vector Search

Biostrand: Complex Data Analysis With IRIS Vector Search

Thank you

Contact:

Jeff.Fried@InterSystems.com

@jefffried

	InterSystems IRIS: �Achieving Speed and Usability in an Integrated Vector Database
	Overview
	Vector Database as used in RAG applications
	Specialized and Integrated Vector Databases
	InterSystems IRIS Architecture Layers
	The Common Data Plane
	Fast, Flexible Data Encodings
	Projections
	Design Goal
	Vector Storage Model evolved from columnar use cases
	Storage design
	Fast vector operations
	Vector Dimensionality and Performance
	Query processing implementation: Unified SQL Engine
	Semantic Join in SQL
	Semantic Join Result
	Query processing implementation: HNSW index
	SerenityGPT – built on InterSystems IRIS & Vector Search
	Biostrand: Complex Data Analysis With IRIS Vector Search​
	Thank you

