# InterSystems IRIS: Achieving Speed and Usability in an Integrated Vector Database

David Van De Griek, Boya Song, Philip Miloslavsky, Yuchen Liu, Yiwen Huang, Mark Hanson, Jeff Fried, Dmitriy Bochkov

**NEDB 2025** 



# **Overview**

- New design for Integrated Vector DB
- Focused on RAG applications
- Based on:
  - multimodel core ("common data plane")
  - vector data type and vector operations
  - compact storage model
  - vector-aware SQL optimizer
  - embedded Python
- Commercially in use



#### Vector Database as used in RAG applications





## **Specialized and Integrated Vector Databases**



| Criteria    | Specialized Vector Databases          | Integrated Vector Databases                                                                 |  |
|-------------|---------------------------------------|---------------------------------------------------------------------------------------------|--|
| Examples    | Pinecone, Milvus, Weviate             | PPASE, PostgreSQL+pgvector, ElasticSearch InterSystems IRIS                                 |  |
| Ease of Use | Designed specifically for vector data | Integrated into existing databases, leveraging familiar interfaces and tools                |  |
| Footprint   | , , , , , , , , , , , , , , , , , , , | Utilizes existing database infrastructure, reducing the need for additional resources       |  |
| Performance | vector searches, often with           | Performance can vary based on the underlying database but benefits from integrated indexing |  |

### **InterSystems IRIS Architecture Layers**





#### **The Common Data Plane**





^global( <key1>,<key2>,... ) = \$encoding( <val1>,<val2>,... )

### **Fast, Flexible Data Encodings**





### **Projections**





| Location | Sensor | Date       | Time         | Value |
|----------|--------|------------|--------------|-------|
| ICU5     | вр3    | 2024-07-04 | 10:12:03.642 | 7200  |
| ICU5     | ВР3    | 2024-07-04 | 10:12:06.975 | 7300  |
| ICU5     | ВР3    | 2024-07-04 | 10:12:10.308 | 7700  |
| ICU5     | ВР3    | 2024-07-04 | 10:12:13.641 | 8500  |
| ICU5     | BP3    | 2024-07-04 | 10:12:16.974 | 9100  |
| •••      | •••    |            | •••          |       |



PUT GET INSERT

```
^wave(202407, "ICU5", 123) = $list("Smartlinx5", "BP3", 8605)

^wave(202407, "ICU5", 123, 1, "ts") = $list("2024-07-04 10:12:03.642", 3.333)

^wave(202407, "ICU5", 123, 1, "v") = $vector(7200, 7300, 7700, 8500, ...)
```

### **Design Goal**



Unified, versatile data engine that supports vector fields and vector indices (e.g. HNSW index)

- Unified storage for data and index vector data, columnar data and regular data
  - Minimize data duplication
  - Index/field size not limited by memory size
- Unified SQL engine with great query processing capabilities, including
  - Transactions
  - Full SQL Support
  - Filtered Vector Search
  - Vector Range Search
  - Vector Range Join
  - Vector with Fulltext Search
  - Semantic Join

#### **Vector Storage Model evolved from columnar use cases**



**Storage model** for SQL based on native \$vector data type to deliver key analytical querying facilities needed for next-generation Data Warehouses, Lakes and Lakehouses

- Aligns physical table layout with typical analytical access patterns
- \$vector language feature designed to support translytical workloads
- Order of magnitude speedup for analytical queries thanks to SIMD use and vectorized execution
- Schema flexibility mixing row & column storage is a key InterSystems IRIS differentiator
- Indexing flexibility can use a columnar index on row-based storage, etc.





### Storage design



**Vector fields** stored as a collection of chunked vectors, 64K values per chunk. Metadata (Columnar Index Map and Columnar Data Map) support fast sorting and SIMD operations.

Special %Vector type: %Embedding

Flexible design, including ability to accommodate VERY long vectors

Store long vectors in their own globals for performance and footprint

Provision for managing space/precision tradeoffs

\$vector can be integer, decimal FP; supports sparse encodings and different storage size magnitude for both sparse and dense encodings

new DataDefinitionLocation property

#### **Fast vector operations**



- Numeric Operations (scalar and vector-wise)
  - \$VECTOROP("+" | "-" | "/" | ... | "cosine" | "dot-product", vector, vector | scalar, bitmap) returns vector
- String Operations (scalar and vector-wise)
  - \$VECTOROP("\_" | "lower" | "substring" | ..., vector, vector | scalar, bitmap) returns vector
- Filter Operations (scalar and vector-wise)
  - \$VECTOROP("=" | ">" | "<" | ... | "defined" | "undefined" , vector, vector | scalar, bitmap) returns bitmap
- Aggregate Operations
  - \$VECTOROP( "count" | "max" | "min" | "sum", vector, bitmap) returns scalar
- Grouping Operations
  - \$VECTOROP("group", "count" | "max" | "min" | "sum", vector, bitmap, list) modifies list
- Miscellaneous Operations
  - \$VECTOROP("convert", vector )
  - \$VECTOROP("mask", vector, scalar)
  - \$VECTOROP("positions", vector, bitmap)
  - \$VECTOROP("bytesize", vector)
  - O ...

### **Vector Dimensionality and Performance**



- We can support vector storage and operation on high-dimensional vectors thanks to the fast \$vectorop
- Runtime of vector operation increases sub-linearly



### Query processing implementation: Unified SQL Engine



- Unified Storage Model
  - comparable access cost
    - for any storage type
    - for any index type
- Universal Query Optimizer
  - pre-optimizer query rewrite
  - awareness of vector algorithms
  - multi-index plans
- Adaptive Parallel Execution
  - data format agnostic



- Example: Semantic Join
  - join with a similarity condition on word embeddings [1]
  - tolerates misspellings and different formats to deliver more join results

#### **Semantic Join in SQL**



```
select
    FilmA.title Film1,
    FilmB.title Film2,
    ReviewA.star_rating * ReviewB.star_rating CombinedRating
from Cinema.Film FilmA
join Cinema.Film FilmB
    on (vector_cosine(FilmA.overview_embedding, FilmB.overview_embedding)>.55)
     Cinema.Review ReviewA on (FilmA.imdb_id=ReviewA.imdb_id)
ioin
     Cinema.Review ReviewB on (FilmB.imdb_id=ReviewB.imdb id)
join
where FilmA.imdb_id<FilmB.imdb_id
    and FilmA.release year>1950
    and FilmB.length>60
order by CombinedRating desc, FilmA.imdb_id, FilmB.imdb_id
```

#### **Semantic Join Result**





### Query processing implementation: HNSW index



- Implemented HNSW index according to Malkov 2016
- No need to store the vectors in the index as the SQL engine can access the original vector field



Reference: Yury Malkov, Dmitry A. Yashunin, Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs
IEEE TPAMI 2016 arXiv link

Challenge: needs to be compatible with parallel INSERT

#### SerenityGPT – built on InterSystems IRIS & Vector Search





#### **Biostrand: Complex Data Analysis With IRIS Vector Search**





**Contact:** 



Jeff.Fried@InterSystems.com



@jefffried

# Thank you



